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Attorney Docket No. 77346

- A SPATIAL IMAGE PROCESSOR

STATEMENT OF GOVERNMENT INTEREST

The invention described herein may be manufactured’and:used

by and for the Government of the United States of America for
governmental purposes without the payment of royalties therszon or

therefore.

CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is co-pending with related patent
applications entitled.NEURAL DIRECTORS (U.S. Patent Application
éer. No. 09/436,957), NEURAL SENSCRS (U.S. Pztent Apolication
Ser. No. 09/436,956), STATIC MEMORY PROCESSOR' (U.S. Patent
Application Ser. No; 09/477,638), DYNAMIC MEMORY PROCESSOR (U.S;
Patent Application Ser. Nof 09/477,653) and MULTIMODE INVARIANT
PROCESSOR (U.S. Patent Application Ser. No. 09/641,395), by the
same inventor as ;his patent application. -

BACKGROUND QF -THE INVENTION

(1) Field of the Invention

The invention relates to neural networks and is directed

more particularly to a spatial image processor neural network for

- processing spatial image data to distinguish one configuration of

component objects from a different configuration of the same

component objects.
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(2) Description of the Prior Art

Eiectronic neural networks have been developed to rapidly
identify patterns in certain types of input data,'or to classify
accurately the input patterns into one of a plurality of
predetermined classifications. For example, neural networks have
been developed which can recognize and identify patterns, such as
the identification of hand-writtgn alphanumeric charaéters, in
response to input data constituting the pattern of on/off picture

elements, or "pixels," representing the images of the characters

‘to be identified. 1In such a neural network, the pixel'pattern is

represented by, for example, electrical signals coupled to a
plurality of inpﬁt terminals, which, in turn, are connected to a
number of processing nodes, each of which is associated with one
of the alphanumeric characters which the neural network can
identify. The input signals from the input terminals are coupled
to the processing nodes through certain weighting functions, and
each processing node generates an outpuf signal which represents
a value that is a non~linear function of the pattern of weighted
input signals applied thereto. Based on the values of the .
weighted pattern of input signals from the input terminals, if
the input signals represéht a character, which can be id;ptified
by the neural network, one of the processing nodes, which is
associated with that character will generate a positive output
signal, and the others will not. On the‘other hand, if the input
signals do not represent a character, which can be identified by

the neural network, none of the processing nodes will generate a

positive output signal. Neural networks have been developed
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which can perform similar pattern recognitioa in a number of
diverse areas.

The particular patterns that the neural network can identify
depend on the weighting functions and the particular connecﬁions
of the input terminals to the processing nodes. As an example,
the weighting functions in the\above—described character
recognition neural netwerk esSen;ially will represent the pixel
patterns that define each partieular character. Typically, each
processing node will.perform a summatioﬁAoperation in connection
with values representing the weighted inputAsignals provided
thereto, to generate a sum that represents the likelihood that
the character to be identified is the character associated with

that processing node. The processing node then applies the non-

linear function to that sum to generate a positive output signal

th

if *he sum is, for'example, above 2 predetermined threshold
value. Conventional nonlinear functions which processing nodes
may use in connection with the sum of weighted input signals
generally include a step function, a threshold function, or a

sigmoid. 1In all cases the output signal_from the processing node

~will approach the same positive output signal asymptotically.

Before a neural network can-be useful,-tﬁe weighting
functions for each of ﬁhe respective input signals must be
established. 1In somevcases, the weightiﬁg functions can be
established a priori. Normally, however, a neural network goes
through a training phase in which input signals representing a
number of training patterns for the types of items to be

clazssified (e.g., the pixel patterns of the various hand-written
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charzcters in the character-recognition example) are applied to
the input terminals, and the output signals from the processing
nodes are tested. Based on the pattern of output signals from

the processing nodes for each training example, the weighting

functions are adjusted over a number of trials. After being
- trained, the neural network can generally accurately recognize'
patterns during an operational phase, with the degree of success -

based in part on the number of training patterns applied to the

W O ~N O 0 AW N

neural network during the training stage, and the degree of

10  dissimilarity between patterns to be identified. Such a neural
11  network can also typically identify patterns that are similar,
12 but nct necessarily identical, to the training patterns.

13 Cne of the problems with conventlionzl nsural network

14 archizectures as deécribed above is that the trzining

15 methodology, generally known as the "back-propagation" method, is
16 often extremely siow in a number of important applications. 1In
17 addition, under the back-propagation method, the neural network
18 may result in erroneous results, which may réquire restarting of
19 trainiﬁg. Even after 2 neural netwcrk has been through a
20 training phase confidence that the best training has been
21 - accomplished may sometimes be poor. If a new classification is
22  to be added to a trained neural network, the complete neural

23 network must be retrained. In addition, the weighting functions
24 generated during the training phase often cann?t be interpreted
25 in ways that readily provide understanding of what they

26 particularly represent.
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Thus, a neural network is typically considered to be a
trainable entity that can be taught to transform information for
a>purpose. Neural networks are adaptable through a form of

training, which is usually by example. Long training times is a

problem in trainable neurzl networks.

The spatial image processor is part of a new neural network
technoiogy that is constructed ;gther‘than trained aé in common
neural networks. Since the words "neﬁral network" oftén connote
a totally trainable neural network, the fullldefinition of a
constructed neural network, as used herein, is as follows: A
constructed neural network is a conpéctionist neural network
system that is assembled using common neural network éomponents
to perform a specific process. The assembly is analogous to the
cqnstruction of an electronic'assembly using resistors,

transistors, integrated circuits and other simple electronic

~parts. Some examples of common nsural components are specific

valuss and/or types of connec;ions, processing'elements

(neurons), output functions, gain elements and other artificial
neural network parts. As in electrénics, the laws of nature,

such as mathematics, physics, chgmistry, mechanics, and "Rules of
Experience” gover;-the assembly and architecture of a con;tructed-'
neural network. A constructed neural.nétwo:k, which is assembled
for a specific process without the necessity of training, can be
considered equivalent to a trained common neural network with an
infinite training sequence that has attained an output error of

zero. Most neural network systems of many constructed neural

network modules, such as the spatial objects data fuser, have
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1 weights that are never altered after they are constructed. When

~No

the traditional neural network system is trained, learning occurs. 

only in special memory modules. 5uch special memofy modules are o
part of this new constructed neural network technology that
learns an example in a single applicétidn and does nof require a

retraining of the old examples when a new example is added to a

~N o O BWw

previously trained system, i.e., old memory is retained and not

oo

altered.

9 In artificial neural networks various neural ccmponents have
10  synonyms. For example a "neuron", a "processing element” and &
11 "processing node" are the same. A "connection value", a "weigﬁ;
12 value" and "weighting value" are the same. One or more of such
13‘ synonyms are usgd in this and or other associated applications.
i4 Despite advances in spetial image processors, there remains
15 a need for a spatial image processcr neural network wherein the

16 spatial image processor neural network has a very high neuron

17 "count (approximately 10° to 10° neurons), depending on the

18 multidimensional space the neural network modules operate, and is

19  of an architectural structure providing unique attributes:
: 20 (1) The spatial image processor discriminates between two groups
% T2 comprised of identical components in two different spatial
22 configurations. It is noted that most all image recognition
23 systems cannot discriminate between two such groups.

_ 24 (2) The spatial image processor increases its sensitivity or

25 attention to an object of interest in a field of more than
26 one object.
27
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(4)

(6)

(7)

(8}

(9)

The spatial image processor increases its sensitivity to an

‘object of interest in a field where one or more other

objects are of non-interest.

The spatial image processor recognizes a‘partially hidden
object when the object is incomplete or is bisected by one
or more other objects.

The spatial image processor recogrnizes one or more objects
in a field of many differeﬁ£ objects.

The spatial image processor interfaces with an éxternal
neural network or syétem-(not described herein) that
uninhibits an object that becomes the spatiai image
processor's "choice"‘of.object to be fully recognized and to
be attentive cf the object whsn such an object is in or
enters the visual field.

The spatial image processor has a prototype output that

represents the general class of a recognized object

regardless of the status of the extsrnal system activations.
The spatial image processor contains a low lgvel of.
processing outputs that represent peripheral vision
recognition outputs. Each of the processed outputs provides
an activation fbr a component object image in any po§ition
on the retina.

The spatial image processor recognizes various sizes of the
same object. An object, subtending varying size virtual

images in the image field, as it is viewed from near to far,

is continuously recognized as the same object.
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(10) A first embodiment of a spatial image processor "retina"

(11)

(12)

(13)

(14)

(15)

contains a connection set that gives it a natural image
position invariant processing retina.

A‘second embodiment of a spatial image processor "retina"
contains a connection set that gives it a natural processing
fovea. .The foveating (foveal vision) retina contains a
"natural sweet spot of_recognitipn" without an architecture
of geometric division to provide this process. It is noted
that the general definition of a. foveating retina, or foveal
visicn, has two defining human characteristics. One is that
an image seen in bright light is sensed in color as the
fovea contains mostly cones. The second is that the foves
contains an area of the eye having a high concentration of
pHotonic elements to produce recognitions‘wiﬁh fine detail
in contrast to the course detail of peripheral vision. The
s?atial image processor uses 2 high resolution monochrome
photo transducer through out the retina.

The spatial image processor senses a spatial arrangement cf

component objects to process a temporal signal containing

the spatial data.

The—spatial image proceséor~has a ‘high memory efficiency as
it can use a cémponent object in more than one high level
object of recognition. . |
The spatial image processor uses linear neurons in most all
neural network processings.

The spatial image processor architecture is designed and

operates under one or more technologies such as constructed
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neural network, concurrent multiple frequency band and

synchronous nonlinear dynamical (chaos) technologies.

SUMMARY OF THE INVENTION
It is, then, an object of the invention to provide a spatial
image processor neural network having the desired attributes

noted herein immediately above.

N

With the above and other oojects in view, as will
heréinafter’sppear, a feature of the present invention is the
provision of a spatial image processor neural neﬁwork fot
processing image data to discriminate a first spatial
configuration of component objects from a second configuration of

identical component objécts, the network comprising: a photo

)

transducer input array for conver:;ng a virtual image to pixel
data and sending a signal indicative of said pixel data; a
localized gain network (LGN) module for receiving the signal
indicative of the pixel data, wherein each input pixel drives a
corresponding neuron, and incréasing-the gain of individual
neurons &s a function of attention activafions; and a retina
arrazy and parallel msmory.processor for réceiving the pixel data

from the LGN module, for processing the pixel data into memory

vectors and for generating a signal including attention

activators for the localized gain network module and synchronous
temporal activations. The network further comprises neuron
arrays, component recognition-vectors and chsotic oscillators
(nonlinear dynamical oscillators) assembly for receiving ths

memory vectors, for receiving associative connection feedback and

9.
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for sending feedback data to the retina array and parallel memory
processor. Each of the component recognition vectors is operable
to activate'a chaotic oscillator, with each of the chaotic
oscillators being different each to represent one of the
component objects. The component recognition vectors further
send peripheral vision object activations. The network also
includeq a temporél spatial ;etina for receiving the pixel data
from the loczlized gain network';odule and the temporal
activations from the component recognition vector assembly and
parallel memcry processor, for generating temporal spatial data
and for sending temporal spatial vectors. Also, a temporal
paraliei memcry processor receives the tempcral spatial vecnérs
from the temporal spatial retina and sends temporal component
memory vectors. The network still further comprises a temporal,
spatial and objeét recognition &ector array for receiving the
‘temporal component memory vector from the temporal retina array
and parallel memory processor and external associative -
connections, for forming an 6bjec: representation of the firsct
configuration of component objects, for sending prototype object
activations and for sending the associative connection feedback
to the neuron array, component recognition vectors, and to
synchronize chaotic oscillator assemblies, which in turn further
increases the attentive signal for feedback to the LGN and
temporal spatial retina.

The above and other features of the invention, including
various novel details of construction and combinations of parts,

will-now be more particularly described with reference to the

10
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accompanying drawings and pointed out in the claims. It will be

understood that the particular network arrahgement embodying the

invention is shown by way of illustration only and not as a

limitation of the invention. The principles and features of this
invention may be emplpyed in various and numerous embodiments
without deparﬁing from the scope of the invention. |
.BRIEF DESCRIPTIO& OF‘THE DRAWINGS

A more complete understanding of the invention and many of
the attendant advantages therestc will be réadily aporeciatsd as
the same becomes better understood by reference to the foliowing
détailed'descriptibn when considered in conjunction with the

accompanying drawings wherein like reference numerals refer to

like

U

arts and wherein:

FIG..l is a block diagram cf one form of a spatial'image
processor neural network illustretive of an embodiment cZ the
invention;

FIG. 2 is a side elevational view of a car cbmprising a
multiplicity of components;

FIG. 3 is a side elevational view, similar to FIG. 2, but
shoding the identical- car components in a different érrangement;

FIG. 4 is a side elevational view of the car of FIG. 2, but
in part obstructed from &iew;

FIG. 5 is an enlarged block diagram showing input array and

localized gain network portions of the network of FIG. 1, with a

portion thereof shown diagrammatically broken out and enlarqed:

11




FIG. 6 is a block diagram illustrating internal portions and
funttgons,of a parallel memory processor and neuron array of FIG.
1;

FIG. 7 is a diagrammatic illustration of a portion of the
localized gain network and parallel memory processor and neuron
array of FIG. 6;

FIG. 8 is a diagrammatic illustration of further portions

A

and functions of the parallel memcry processor and neuron array

s

of FIGS. 1 and 6;

FIG. 9 is an enlarged diagrammatic view of components and

.functions of a poftion of the parallel memory processor and

nsuron array of FIG. §&;

FIG. 10 is a diagrammatic representation of an arrangement
and functions of portions of compsnent vacters and chaotic
oscillators assembly of FIG. 1;

FIGS. 11 and 11A are diagrammatic representations of an

arrangement and function of a chaotic oscillators portion of the

component recognition vectors assembly of FIG. 1;

FIG. 12 is a diagrammatic representation of functions of
portions of a temporzl spatial retina of FIG. 1;

FIG. 13 is a diagrammatie representation of neuron
connection vaiues in the temporal spatial retina of FIGS. 1 and
12;

EIG. 14 shows an exeﬁplar image of ten pixels at two

different scales, or distances, including temporal pulses;

12~




" portion of the network Subassembly of FIG. 24;

—

FIGS. 15-19 are diagrammatic representations of neuron
connection sets and temporal activations for the exemplar»imagé".
of FIG. 13;

FIG. 20 is a diagrammatic representation an additional
neuron connection set and temporal activation for thé exemplar
image of FIG. 13, including an illustration of two connection
sets superimposed; o - -

FIG. 21 is a combined giapﬁical depiction of the temporal
spatial data activities of FIGS. 14-20;

FIG. 22 is a diagrammatic representation of an arrangement
and functions of portions of a temporal_parallel memory processor
of FIG. 1; |

FIG. 23 is a further diagrammatic representatioh of
functions of portions of the temporal pérallel ﬁemory-proceSSOr
of FIGS. 1 and 22; | |
| FIG. 24 is an enlarged.diagrammatic repressntation of a
portion of the temporal parallel memory processor of FIG. 23;

FIG. 25 is a.detailea diagrammatic represeﬁtation of &

FIG. 26 is a detailed'giagrammatic iepresentation of
portions of the temporal parallel memory processor and temporai
component vectors of FIG. 1;

FTIG. 27 is a detailed @iagrémmatic represéntations of the
temporal componeht vectors and portions of a épatial recbgnition
vector array of FIG. 1; and .

FIGS. 28-30 are diagrammatic representations of an alternate

embodiment of the spatial image processor and its components.

13
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the pixel data into component recognition vectors 49.

DESCRIPTION OF THE PREFERRED EMBODIMENT

Beferfing to FIG. 1, there is shown the overall architecture
for the preferred embodiment of spatial image processor 10. If
will be seen that a photo transducer input array 40 converts a
virtual image 42 to an array of scéler-data, which is called
"pixel data" 44. The pixel data 44 initialiy'passes through a
localized gain network (LGN) module 45 without change, the
unchanged output of LGN 45 refef;ed to as pixel data 44a. Pixel
data 44z is forwarded (referred tc as pixel data 44b) to a |

parallel memory processor and neuron array 46, which processes

More specifically, the component recognition vectors 49 are

the result of sparse neural activations that represent a specific
virtual image on the input array 40. The appropriate component
racogrition vectors 49 activate all component cbjects that are
recognized in a neuron array and component recognition vectors
assembly 48. For each recognized object activation, a periodic
broadband impulse 104 is fed back toward one or more relative
pixel positions in the signal path that provided the gradient
data for the component recognition vector 49. A feedback signal
50 goes to LGN module 45 and tc a temporal spatial retina<52,
referred to as 50a and 50b, respectivgly. In the LGN 45 module,
the feedback signal 50a partially increases the neuron gain to
increase the sensitivity, or attention, of spatial image
processor 10 for each component object it recognizes. That is,

the feedback signal 50 serves as attention activations 50a. The *

temporzl spatial retina 52 glso receives the same feedback

14
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signal, referred to as temporal activations 50b. LGN 45 pixel
data 44a is also provided to temporal spatial retina 52, referred
to as pixel data 44c. The impulse signals merge with LGN 45

pixel data 44c in the temporal'spatial retina 52 as temporal

‘component objects, each with unique identifying temporal

‘activations. Each temporal component activation occurs at a

different time to represent the position and identification of a
specific component object relati;e tdpother_component objects.
The virtual spatial retina 52 merges the sequential temporal
activations SObTin théir relative positions to each other to
generate sequences of pulses containing amplitude information
represanting a spatial'configurétion of component objects making
up a super object 60, i.e., the cktiect of interest in the scense.
This temporal spatial retina output data 54 is proceSSed in a
temporzl parallel memory processor 56 into temporal component
reCognition vectors 122 in a similar manner as described for
processor 46. The component recognition vectors 122 in turn are
processed inﬁo component activations.- Each component activation
contains information on its relative spat%al configuration
relative to all components that make up thevoverail super object
60, and the activations are recognized in a-spétial reCOgnitioh
vector array 58. The overall super object 60 has associative
connections 172 to each of the éomponént objects that it consists
of, which are fed into assembly 48 as associative connections
feedback 172. The associative connections feedback 172 are

processed within assembly 48 to enhance the broadband impulse

104. The activation of these connections by the recognition of

15
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the overall super object increases the amplitude of the temporal
activations only for the associative component objects. The
feedback signal attention .activation 50a in the LGN module 45
increases the attention gain to a higher level for the specific
component objects, thereby the ovzrzll cbject becomes én
attentive object representation §0.

The spatial image processor 10 can shift its attention under -
external control through a set 6? external associative
connections €2. Consider the following three scenarios
reflecting external associative connections 62 where one of three
different active conditions,Asuch és “tired of walking”,
“hungry”, or “thirsty” exist and the spatial image processcr 10

is viewing the scene in FIG. 4. There are at least two, and

perhaps' many, externzl associative connections 62 that can effect
the spatial image processor 10 relative to the specific input
scene. One is between the tired mode and the old car recognition
neural circuit (as the car represants a possible ride) and the
other is the hungry mode and the tree object recognition neural
circuit (the tree is a possible source of fruits or nuts).
Either recognition neural circu}t is enabled by the tired or -
-hungry activation output to all$w it to become fully attentive
through feedback. The tired mode causes the spatial image
processor 10 to attentively recognize the old car, as described
in the paragraph above. If the mode is shifted to hunger, the
feedback to the car component objects becomes inhibited and the

tree object components become enabled. In the thirsty mode,

there are no attention object representations 60 for objects in

16
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the given image, as the scene contains nothing of interest.
Thus,wthere are no full attention activations. - Under this mode,
all previous trained recognizable component objects have an
initial low-level attention activation. An'initial low-level

attention allows the spatial image processor 10 to quickly change

‘its mode to full attention for objects it knows and to ignore

irrelevapt visual information when enabled by the external
associative connections 62. . Alsg, the spatial image processor 10
will still have prototype object activations 54 for all corréct
spatially configured objects in the image data.

The spatial image processor 10 recognizes a-partially hidden

object becéuSe the relative spatial configuration information is '

encoded in each component that makes up the visualized object 60
and is recognized-in the spatial recognition vector array 58.  1In
a divided or partially exposed object, all of the recognizable
and visible components maintain the correct spatial
configurations that will allow super object 60 recognition.

Referring to FIGS. 1 and 5, it will be seen that the spatial

‘image proceSsor 10 receives image data into the photo transducer

input array 40 to become pixel data. Input array 40 converts
image data to scalar values of pixel datum relative to the imege -
intensities. Tﬁevpixel array has the dimensions of P by Q,; or
“s” pixel_;ount. The scalar values of pixel data are connected
to the localized gain network (LGN) 45 of the same spatial |
dimensions. The LGN 45 is named after the biological neural
group called the lateral'geniculéte nucleus of the thalamus that

modulates the optical pathway between the eye and the visual

17
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cortex. LGN 45 and the biological system are both associated
with attention. The localized gain module 45a of LGN 45
increases the gain of individual neurons as a function of
attention activations 50a. The minimum neuron gain is one and it
increases its gain with the average energy of attention
activations 50a. Each input pixel has a corresponding neuron 68

within localized gain module-45a (FIG. 5). The spatial

':elationship of the pixel array is preserved through LGN 45 and

in many of the modules in this invention, which is very important
to it§ processing ability. The sutput stage of LGN 45 is a
neural! module called a vector normalizer 70 (FIG. 5). The vector
normaiizer 70 adjusts the array of scalar data 44d from localized
gain module 45z into a normalized vector, or unit vector 44z of
the image pixel data via normalization activation 6é8a to neuron
68b. Each neuron 68 has a corresponding nguron 68b within
normalizer 70 as shown by circuit 75.

The array of scalars 44d is the output of all localized gain

module linear neurons 68, thus array 44d has a2 spatial dimension

‘equal to the photo transducer input array 40, as each neurcn 68

corresponds -to one of the “s” pixels. Thus, there are “s” neural

circuits 75 in LGN 45. This heuﬁal architecturé, whereiﬁ;each
pixel corresponds to a neural circuit, is represented throughout
the neural circuits of the spatial image processor 10, as will be
discussed further herein.‘ The architecture allows an image in
any position on a retina to generate a signal flow from a spatial
P x Q organization to one or more image components in their.fixed

neural positions in the spatial image processor 10 architecture

18
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and,then.allows a feedback signal to return back to.the same
retinal position in the temporal spatial retina 52.

Therefbre, whenlthe attention activations 50a occur, they
cause the contrast of tﬁe non-attentive pixel data to dec;ease
relative to tﬁe enhanced attentive pixel daté. The vector of LGN
45 is processed by both the paralle; memory processor 46, where
it is referred to as vector 44b, and by temporal parallel memory
processor 56, where it is referred to as vector 44c.

The fouf modules;»i.e., the parallel memory processor and
neuron array 46, the component recognitioh vectors éssembly 48,
the temporal parallel memory processor 56, and the spatial
recognition vector array 58, are described in U.S. Patent No.
5}446,828, incorporated herein by reference, and U.S. Patent
Application Serial No. 09/641,395. HoweVef, each of the modules
as describéd therein is modified by the removal and/or addition
of cther constructed neural nétwork parts, modules and feedback
paths added to the architecture to obtain the architecture of the
spatial image processor herein.

Referring now also to FIGS. 6 and 10, the parallel memory
processor and neuron array 46 is described in more detail.
Processor 46 processes the pixel.data 44b into feature vectors
47. Feature vectors 47 contain “arbitrary features'? such as the
development of unique signals caused by a deterministic
interaction between the spatialAimage processor 10 neural network

architecture and an input of an image that produces one or morex

" feature vectors:47 of an image. Each feature vector 47 is

relative to the image's local intensity gradients. about a pixel

19
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in a retina array. Feature vectors 47, which are developed from
similar intensity grédients, are grouped as "common features" 55.
Component recognition vectors 49 are the result of a process in
a space called the memory vector space 59. The sparse neural
activations within memory vector space 59 form memory vectors 63,
as shown in FIG. 10. Memory vector space’' 59 and a memory vector
63 have a corollary to the visual cé:tex in a brain and the

S

neural activity as seen in & position emission tomography and/or

a nuclear magnetic resonance process when a subject views an

object. The memory vector 63 is the equivalent of the pattern of
activity, caused by a stimulus, and phe memory vector space 59 is
the equivalehf of the “space” of the,cerebral cortex where all
possible “recognition activities” may occur. Thus, when an input
stimulus is applied te tﬁe spatizl image processor 10, a sparse
memory vector is active in the memory vector space.

The array of scalar data 44b from LGN 45 spatially
represents a retina of data. Therefore, LGN 45 output data 44b
“becomes” the spatially virtual retina 72, which is part of an
image position and size invariant fetina 74 in parallel memory

processor 46. This assignment of the data 44b as the virtual

~retina 72 provides a continuity and integration of U.S. Patent

Application Serial No. 09.641,395 into the spatial image

processor 10. The image position and size invariant retina 74
outputs a multidimensional feature vector 47 for each pixel in
the retina. The multidimensional feature vector 47 represents
the local image gradients about each pixel. Referring also to

FIGS. 7-9, a gradient window 78 is of a star sapphire-like shape
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with many'points'th;tbare~lines of pixels. The cenﬁfal pixel in
the gradient window 78 is the reference pixel from which the
differences to all other pixels are formed in a wihdqw differehce
neural network (WDN) 80. These differences are decoupled'and'
dispersed in a vector decoupler (VD) 82 and neurai director  (ND)
84 to produce the feature vectors 47.'»There is one feature
vector 47 for each pixel; thus, the image position and size
invariant retina 74 output featﬁée vector 47 is a vector of local

vectors. There is a "dimensional explosion" of data as compared

‘'to the image pixel data 44a to that of the image position and

size invariant retina 74 output 47. This dimensional increase

+h
th

allows linear separation and colisction o eature data in &
higher dimensional space.
The 'array of feature vectors 47 has a dimension of "s" times

"r", where "s" is the pixel dimension and "r" is the output

‘dimension of each ND 84, as shown in FIG. 7. The output

dimension “r” is proportional to the combinations of pixel
comparisons within gradient window 78. |

The image position and size ihvarianp retina 74 provides
output feature vectors 47 which are processed by a parallel set
of constructed neural network memory processors, each comprising
@ multiplicity of multi-layer ND’s 84, feedback and‘threshold
positional king'of mountain networks (FTPKOM) 86, and sum neural
networks (SUM) 88. Each'memory processor, with its multi-layer
ND’s 84 and FTPKOM’s 86, is a local processor that increases the
resolution of the local gradient data about a single refereqce

pixel (p,q) in the retina and then reduces it to a low
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dimensional vector. Each of the local pixel (p,q) memory
processors operates independently on its local feature vector 47
up to the FTPKOM module output space. The local memory processor
functions similarly to that described in U.S. Patent Application
Serial Number 09/477,638. A FTPKOM module 86 (FIG. 9) is a
special positional king of the mountain (PKOM) device with
variatiqns'in ifs design. The first variation is the use of a
fixed or a dynamic threshold 92';hat has its maximum level set to
a relative value of the highest peak neural director output for
all éixel (p,q) memory processors and for 21l neural director 84
layers. The m;nimum threshold is set relative to the peak self
noise, or image noiséflevel of any pixel (p,q) memory processor
neural director 84 layer. *This FTPKOM module 86, besides
limiting the output to one output, limits nonessential low
contrast image activations and inhibits any output when there is
not a graded pixel set around the associated reference pixsi in
the image position and size invariant retina 74 (FIG. 6). At
least one or more neural director 84 output neurons musf be
greater that the threshold 92 value to activate a FTPKOM module
86. The threshold operation will be covered in more detail
herein below. The second variation to the FTPKOM design is
associated with the feedback paths, to be discussed in the
paragraph below.

Continuing with the local memory processors, the FTPKOM
modulé 86 outputs 94, as shown in FIG. 8, are brganized through

virtual common features 55. Each SUM 88 accumulates only similar

feature activations from each FTPKOM module 86 and each sum 88
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neuron input value is -subtracted by a threshold BQadvalue to
allow_only essential features to the sum output neuron 88. Sum
neural network outputs-98 (FIGS. 6 and 8) become inputs to the
memory vector space 59.

Referriﬁg.again to FIG. 10, a component recognition vector

49 is a matched filter instantly trained to recognize a whole

object, such as a component object or a temporal component

object. A compohent recognitidn vector 49 cqntains a neuron 67
(feedforward neuron) and a set of connections 79 matched to a
pattern called a memofy vector 63, which is the result of an
input component object image. Each compohent récdgnition vector
49 is used to recognize a specific memory vector 63 of
activations.

En array of component recognition vector neurons 67 includes
feedforward néurons 67a, which activate the passage of a temporal
signal thrbugh a feedback neuron €7b. A combination of a
recognition vector neuron 67 and a group of component recognition
vectér connections 79 provides for the output of the component
recogrition vecﬁor 49. An active memory element 110 is shown‘in
FIG. 10 as a single éctivg element to simplify the drawing and |
the conception of the memory vector 63. Each active memory
element 110 is in reality the highest representation of a group
of individual activities of SUM’s 88 (FIGS. 6 and 8). The
connection values for all sum neural networks are unit values and
comprise connection pairs~102 (FIG. 9). The connection'pairs 102
conduct feature information in a feed forward mode and receive’

feesdback activations 104 in return along a parallel path. The
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matching of sparse connections 79 of component recognition
vectors 49 to their memory vectors 63 is shown in FIG. 10, the
connections_being learned in pairs of parallel pafhs. Each
conﬁection pair 79 consists of a ncrmalized vector element value

in the feedforward path and a unit connection value in the

feedback path.

Referring now also to FIG.'}l, the activation of a component
recognitioﬁ vector 49 produces a peripheral vision object
activation 66 (FIGS. 1 and 11) and activates its chaotic
oscillator 65 in component recognition vectors assembly 48 {TIG.
11). The architecture that allgws two or more concurrent okjec:
recognitions is the sparse connections 79 of the component
recognition vectors 49 (FIG. 10) and their’component object
memory vectors 63 (FIG. 10) in a high dimensionzl space. The
component recognition vectors ;9 provide spatial nonlinearities
in the memory vector space 59 oi the component memory vectors 63
(FIG. 10), é; well as the classic nonlinearities caused by
thresholds and/or FTPKOM circuits. The component recognition
vector processings and the virtual common featufe space
architectures are the data paths that allow the peripheral
recognition of an object in any position of the retina. Also,
the stcrage and recognition efficiencies of this invention are
based upon the fact that low level component objects are storsd
in memory, which can be used for other visual objects in
different spatial configurations. There are as many component

recognition vectors 49 as needed to support all of the output

classes in the preferred embodiment of the invention. At this
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point in the architecture, the car components in FIGS. 2 and 3 .
will activate identical component objects.

The spatial image processor 10 provides peripheral vision
object activations 66 (FIG. l)‘from low level compohent object';
recognition activations 110 from a module of recognition vectors
49 (FIG. 11) of the parallel memory processor and neuron array 46

(FIG. 1) as a component object's optical image can be recognized

away from the retina's fovea center. In this instance, the term

"module" represents a neural circuit, a neural network or a -
module of modules ﬁhat perfcrms a specific process. Modules 46,
48 and 56, 58 (that is, parallel memory prdcessor and neuron
array 46, component re;ognition vectors assembly 48, temporal
parallel memory processof 56, and spatial ;ecognition vector
array 58) are similar modules with similar processes and
components but with slight differsnces in szach. Modules 46 and
56 receive the same pixel data signal through parallel paths;'44b
and 44c. Therefore, the active pathways to‘the ¢omponent'

recognition vectors are the same in each group of modules. The

modules 46, 48'connect the pixel data through a neural process to -

specific component object recognitions and activate their chaotic
oscillators 65 which produce temporal output pulses. These
pulses (feedback) are only allowed travel along the same paths
(connection pairs carry feedforward signals and feedback
signals). The Signal from the'feedforWard enables the feedback
at each neuron in the feedforward pathway. Thus, only the
temporal signal of one chaotic oscillator can follow the path

back toward the relative pixel pcsitions that enabled it. This
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feedback signal performs two processes. One is to increase the
gain of the image input path that activated_itselfv(attention 50a
to the LGN) énd the gecond is to apply the temporal signal 50b to
its relative pixel positions in the temporal spatial retina 52.
The "temporal" group of modules 56, 58‘carry the pixel data
through the same pathways as the feedforward paths above, but in
the "temporal" group, these pixel signals activate each neuron's
ability to pass "common mode" of.superposed temporal signals
through the feedforward process to its temporal cbmponent object
recognition vectors 122, comparable to the component object
recognition vectors 49 of module 46. Thus, only the temporal
pulses that started their path from tﬁe activation of chaotic
oscillators 65 find their way thrcocugh spatial retina 52 and
processor 56 to temporal component object recognition vecters
122. The temporal signal is a broadband signal superposed on fhe
pixel data signal just as a video tape recorder "carries" the
bias signal on the video signal. The lower band pixel data (LGN
sigﬁal 44c) enables a heuron, in the feedforward path receiving
the pixel data, to also pass the bioadband signal along the same
path. A broadband signal superposed on a negative or zero pixel
value siénal cannot pass through.a neuron in the temporalégroup
neural network. Thus, the temporal group operates as a
"specially controlled multiplexer circuit" to pass the temporal

pulses only to specific places in the neural circuit. The

special controlling signal is the input image itself and the

:"multiplexed paths" are relatively continuous (not uniformly

stepped from sample to sample, except as changes of input images,
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which change the temporal pulses from path to path). Note, since
both groups contain effectively the same modules the word
"temporal" precedes a neural network module name ih.tﬁe'tempéral
group; such as the "temporal cémponent object recognition
vectors” 122, as opposed to the "coﬁponent object recognition

vectors" 49,

A component object‘activatign starts a narfow band chaotic
oscillator 65 (FIGS. 11 and 11A), of the type disclosed in U.S.
Patent No. 5,446,828, and modified to produce a series of
deterministic patterns. Each chaotic oscillator 65 produces a
different set of temporal patterns and cohtains'a matched.filter
96. The matched filter 96 and a dynamic threshold produces one
best métch of thentemporal patterns to produce a single broadband
output pulse per cycle of séquentiél'patterns. The chaoficv
oscillators 65 have similar repeatable pattern periods. The
matched output 104 of connection pairs 102 is a positive temporal
activation pulse that represents itcs ¢bmponent object at a
relative time ahd this pulse is fed back along each feedback
activation path of the connection pairs 102 (FIG. 9). The

relative -time is in comparison to other associated common

cbmponent temporal pulses. The temporal activation 104 returns
through the feedback path of the component recognition vector 49

(FIG. 10) to a sum feedback heﬁrdn 106 (FIG. 8) and continues

back to each FTPKOM 86 that originally provided pért of the

component recognition vector activation. While sum feedback
neuron 106 contains connection pairs 102, which feedback temporal

activations to all FTPKOM 86 circuits, the temporal activatidns

27




dead end at those FTPKOM 86 circuits that did not provide the
origigal feature activations for the combonént recognitioh vector
48 because the FTPKOM feedback neuron lOBF(FIG. 9) is not enabled
for the specific feature. The active FTPKOM feedback neuron 108
that is enabled, as indicated by enabiing path 94a of output 94,
. feeds the temporal activations 104 through the FTPKOM.sum néuron
186. At sum neurdn 186, all activations 104 from enabled = - -
feedback neurons 108 are combiné; together'with temporal
activations from other neural director layers, designated as 50c
in FIGS. 8 and §, to feedback signal 50. Thus, the temporal

activations 104, as 50c, pass through all FTPKOM layers to become

 feedback signal 50, which is provided, as temporal activations

50b, to the relative neuron positions in the temporal spatial
retira 52 represented by the FTPKOM. The temgoral activations 50
are also passed to the same relative neuron position (as 30z} in
the LGN module 45, where the energy in the temporal activations
50a increasés the gain of the specific LGN neuron 68. These
local gain changes increase the attention of the component object
by sharpening the virtual image gradients, or image contrast,
about the component object and reducing the gradients for all
“other objects not activated. The vector normalizer 70 (FIG. 5)
causes a reduction of other gradienis when the attention gain is
increased. The processing function of a vector normalizer 70, in
LGN 45, is to generate and maintain a unit vector from all pixel
element values. Thus, when a selected group of pixel neurons 68
of an object attention are increased in gain, the greater

attentive pixel element values will reduce the contrast of all
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other non-essential images. High attentive values have .the

ability to,effectively “remove” other images from the field of

image processing.

Referring now to FIG. 12, the'temporal spatial'retiﬁa 52
(FIGS. .1 and 12)vcon£ains an architecture that senses the spatial
cénfigurations of the component objects. The temporal spatial _
retina 52, .as shown in FIG. 12, ppntains two arrayé 112, 114 of
neurons. The input array is the temporal retina 112 and the
output array is the spatial retina 114 that combines temporal
signals with each LGN.pixei datum 44c into temporal spatial data
signéls 54. Each retina of temporal spatial retipa 52'¢0ntai5$
an array of neurons in the same pixsl orientation as the inpui
array 40 or each of the arrays of the LGN 45 neurons 68, 68b
(FIG. 5). In‘FIG. 12, each spatial retina neuron 118 is
connected, respectively, from the appropriate LGN neuron 68b and
the appropriate temporal activation connections from temporal
retina array 112. Various component objeﬁt temporal signais from
50b activate temporal retina neurcns 116 and are distributed,
through connections, to the spatial retina neuroﬁs 118 to
generate the multipleitemporal signals. The temporal signals are
further superposegrinto the relatively steady LGN output pixel
data 44c. The temporal and LGN sigﬁals.are processed in
different ways. Both activations, from 44c and 50b, become two-
dimensional signal 54. Thus signal 54 can be seen to have two
components;' 54b, the slower changing LGN output signal (low |
bandwidth) from 44c; and 54a, the broadband signal from 50b,.

superposed on 54b. It then activates the multidimensional
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gradient data through their active paths in temporal parallel
memory processor 56 and spatial re;ognition vector array 58.
Signal 54b is processed through processor 56 in the same manner
as pixel signal 44b is processed through processor 46. The
positive values of the signal 54b are used in processor 56 tg

control the active paths of the broadband temporal signals 54a.

‘Each neuron in processor 56 and array 58 that operates upon

signal 54b contains a broadband.;euron component that is
positively activated only when signal 54b has an activation
corresponding to that neuron. These activations are the way that
the multipath signals 54a are passed through the temporal neural

modules.

2 Dynamic Temporal Input Enable (DTIE) 11l4a module receives
all 44c signals and generates an output value that is a
proportion of the peak pixel signal 44c and enables selective
temporai signals 50b recéived by the spatial retinz 114. All
épatial retina neurons 118 receive an enéble signal 115 from DTIE
1142 tﬁat will enable a neuron 118 to accepﬁ temporal signals
from the temporal retina 112 providing the neuron 118 has a 44c
pixel input -walue greater than the enable signal 115. The enable-
signal 115 does not affect tﬂe values of pixel ;iééals 44c to any
neuron 118, nor does it change the input values from the temporal
retina 112 for the neuron 118 that is enabled. All neurons 118
not enabied do not receive temporal siénals from temporal retina
112. |

Each neuron 116 in array 112 of temporal spatial retina 52

is fully connected to a neuron 118 in the array 114. Each
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connection weighting values are calculated as shown in FIG. 13,
for efémple, where array 112 is shown superposedbon array 114
-(dashed lines). Refina neurons 116 on the input array 112 are
labeled as P’ ahd output neurons 118 are labeled as P. P(a) is
an arbitrary output néuron 118 connected to arbitrary exemplar
input. neurons 116 such as P’ (b), P’(c) through P’(j). The .
Euélideqn pianar distances between pairs of the superposed
neurons are ideﬁtified as “b” tﬁ;ough'“j”. The c@nnection weight
values between the arrays 112, 114 from the input neurons (P'(s),r
116) and the output neuron (P(s), 118) are functions of the
spatial positions of each péir of neurons. The wéight value for
the connection between P'(b) and P(a) is the ratio of Kb/E,,
whers E, is the maximum Euclidean distance across the retina; b
is the Euclidean distance between neurons P’ (b), 116 and FP{a),
118; and k is a constant. The weight between P’ (c) ahd P(a) is
ke/E,, and so forth. The retina 52 design of connection
configurations for each neuron'118 from all néurons 116, 'is a set
of connections that generate a gradient of “iso—connection value
radii”. The temporal connection value between spatially. |
identical superposed neurons P(s) and P‘(s) is zero, as.neurons
116, 118 are spatially superposeé, making theAEuclideaﬁ distance
value zefé. (Note that a distance value of zero equates to no
connectivity of data). To generate all temporal connectioné from
neuron 116 of'temporal'retina'llz to neurons 118 of spatial
retine 114, chéose a neﬁrcn 116 and determihe the Euélidian

distances between the neuron 116 and each neuron 118 and
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calculate each connection value as ks/E,, where s is the

Euclidian distance between the neuron 116 and the respective
neurons 118. Select a second neuron 116 and repeét the above
process until all neurons 116 are connected to all neurons 118.
Connection values activated by an image, in a fixed spatial size,
will produce identical connection weight values regardless 6f the
translational or rotational posiFion of said image on retina 5Z.
Examples of proportiénal valued connections and their
temporal spatial data are shown in FIGS. 13 and 15-21. FIG. 13
shows an example of connections generated where one neuron 118,
P(z), is connected to nine neurons 116, P’ (b) through P’ (j!.
Temporal activations that represent component object temporzi
pulses 50b at temporal retina 112, one each at the input neurons
116, P’ (b), through P’ (j), are shown in FIG. 14 for each
connectiqn as shown in FIGS. 13 and 15. The ten éctive pixels
(neurcns 116 with signal 50b and/or neurons 118 with signal 44c)
of the exemplar image of FIG. 14 afe used to generate spatial
configuration data as component object processes for the temporal
spatial ;etina 53, for the temporal parallel memory processor 56
and for the spatial recognition array 58. The temporal
activatiéns 50b cover*;hé feature areas of each component object,
but only a single representative neuron for each component object

is shown in the ekample. The connection sets in FIGS. 15-20 have

' temporal spatial activities 54a from each output neuron 118 at

P(a), connection set b at P(b), and so forth. Assume that all
component chaotic oscillators 65 are synchronized in their

periods, but not in their activations, and each oscillator
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generates a single temporal pulse activation within each -

repeating period. .Therefcre, the temporal pulsé activationS‘SOb;
in re;ina 112 occur at different times and'Qill repeat overltime;
as shown in FIGS. 14. The physical spatial configuratién of
component objectvtemporal pulse activations 50b at neurons 116 of
retina 112 are interconnected through the unique architecture of
the connections to neuron 118 of retina 114 to develop sets of

temporal spatial data activations 54a at each corresponding

neuron 118 and also to generate pulse amplitudes that contain

information on the relative component object spatial -
configurations. Each set of temporzl spatial data activations
54a and their Euclidian connection configurations for each neuron
118, 2(a) through P(j), are shown in_?IGS. 15-20. Each set of
teﬁporal spatial data activations 54z represents a. repeating
vector, where each amplitude at ;ime “t” is an element of the
vector. A partial set of possible'activatiohs 54a are shown in
their exemplar timing order t(b), t(j), t(h), t(i), t(a), t(f),

t{g), t(c), t(e) and t(d). Each output neuron 118 will see nine

- sets of activations in the above order per each temporal period

of time, with a different set of temporal activation amplitudes
dependent upon the spatial cohfiguration of each component object
and their connection value betweenvsaid,component_objectgimage on
retina 52. The ten segments of'temporal spatial data amplitudes
for each of the connection sets each represent the actual spatial

configuration of the ten component objects in a “multiple

‘triangulation lock”, as illustrated by the two component object

trianqular lock for connection sets i and j in FIG 20. That is,
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each component has two or more other components in spatial
triangles, which remain in constant ratios over image translation
and/o; scale size changes. Additionally, the ratios are
sensitive to, and can discriminate component object changes in,
alternate spatial configurations. It becomes obvious, using
connection sets i-and j as shown in FIG. 20, that the Euclidian
geometry of the connection sets fo; the two output neurons, P(b)
and P(i), contains the “multipléufriangular loc%s”, which produce
twb representable sets of temporal spatial data activations 54a.
Thus, an input image containing hidden and/or divided component
objects of a super object 60 may still result in a large number
of “multiple triangular locks” so as to reliably provide a
reccgnition of said super cbject 60 even when some triangular
locks are missing. A super object 60 with a high multiplicity of
triangular locks will also provide a high sensitivityAto
alterations in the component object spatial configurations<and/br
a high sensitivé discrimination between similar images. 1In FIGS.
15-20, the multidimensional informetion in eadh component object
outoput neuron 118 generates a tempcral vector that is used for
and’ contains the spatial configuration for recognition of a super
object 60 image. Images containing a sufficient number of
component objects can be ‘recognized when an image is partially
hidden or divided as the likelihood of the remaining visible
configured component objects remain high, thus providing
recocnition. Humans do this mental process once they have

learned an object by assuming the hidden components are still

part of the whole 6bject. The multiple neurons 118 outputs 54a

34




oy

© W W ~N OV s W N

et ot [ — |-‘.| R [e—y
(e} (8] > w ™~ —

17

Qill reinforce the recognition procesé of a spatial component'
object configuration. The mu;tiple outputs, which represent
component object images encompassing an area greater than a -
single pixel, are not shown.

rIG. 14 also illustrates a distant input image, Image’,
which represents the same component objects and configuration as
in connection seﬁ a, but at a different scale size of virtual
image, i.e., further away from tBe retina. The temporal data for
the connection set a’ is shown in FIG. 15. - The set a’ - connection
ralues have identical ratios to those of connection set a, and
will generate proportional tempo:al spatial.data 54a, where each
repeating vector from set a and a’ point in identical directions
in 2 multi-dimensional space. 'However, they contain vector
magnitude'differénces representing differenﬁ image‘sizes.

FIGS. 15-20 each show series of pulses, or pulse trains
converted into pulses of temporal spatial data 54a for.the;r
respective.éonnection sets, where each pulse has a different
amplitude. FIG. 21 groups these pulse trains into a sihgle‘
figure for ease of comparison. - The temporal spatial data repeats
in time and is shéwn only for three cycles. One cycle in each
temporal spatial data activation-54a is identified and the pulse
amplitudes for the ten time marks are each different in each
temporal spatial data activation 54a, except for reciprocal
connection values. Noteé that one.of the time marks in each group
has an amplitude of zero due to its connection value of zero.
Also, all.temporal spatial data activations 54a, represéntiqg one

super object 60, are in synchrony with each other, as each pulse
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active at one instant of time is the same component object
activation 50b of FIG. 14. FIGS. 13 and 15-20 identify component |
object spatial configurations in a2 superposition of retinas 112
and 114 and show only the relevant connections in each connection
set that develop the respective temporal spatial data 54a signal
trains of FIG. 21. The relative amplitudes contain the spatial

relationship between the ten input neurons 116/118, where each

" connection set is a different relational aspect of the ten

neurons, and show each.temporal spatial data generated by their
respective neural connection aspects. Identical input images
shown in FIG. 14, each actiyates its appropriate connection set a
or set a’ as shown in FIG. 15, and each input image has the same
input aspect and image spatial configurations, although of
different sizes. Thus, the témporél spatial retina 52 gensrates
identical amplitude ratios within ezch temporal spatial da:zz
activations 54a, providing identical temporal vector directions
that represent identical recognitions. The'spatial image
processor 10 processes multidimensional vectors and temporal
multidimenéioﬁal vectors to determine the vectors’ directions in
a multidimensional space as a recognition process.

Referring now also to FIGS.-22-27, the steady state LGN data
44c passes througﬁ the temporal spatial retina 52 unchanged and
becomes the signal 54b component of signal 54 input to temporal
parallel memorylﬁrocessor 56. The LGN data 54b is processed in
the temporal parallel memory processor 56 exactly as the pixel
data is processed in the parallel memory processor.and neuron

array 46 (FIGS. 1 and 6). Besides the existence of the feedback
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paths in processor 46, the LGN data 54b in FIG. 22 produces the

- same gemporal'component memory vectors 122 as the component

memory vectors 49 shown in FIG. 6. The TPKOM 124 of FIG. 24 are
the same as the FTPKOMvBG,'but they do not contain feedback
circuits. The TPKOM 124, besides limiting the output to a single
output connection 128, in conjunction with the dynamic threshold
130[ alép limits the nonessential lcw energy activations and

inhibits an output when there is not a sufficient gradient in the

gradient window of retina array 72a. The TPKOM circuit is

. e ol

controlled by a dynamic threshold 130, as discussed above, and as,,; 

shown in FIGS. 23 and 24. The dynamic threshold 130 receives the
output energy~l32'(FIG. 24) from all neural director 13¢ outpﬁt
neurons (FIG. 23) in its layer, shown as 13Za in FIG. 24.
Threshold 130 then deVelops a threshold as a percentage of the
highest energy (as required by design_considerations) and éésses 
the threshold, as 132b, to all PKOM modules 126 (FIGS. 24 and 25)

in the same layer. The threshold is subtracted from each input

neuron 136, as seen in FIG. 25. The output neuron 134 has a "t"

‘and INH inputs. Any INH positive value input will

unconditionally inhibit the output neuron 134. The "t" input,
when-a positive value, will allow an ouiput of a-unit’valpe,
otherwise the output is zero. The input neuron 136 that contains
the highest positive output value will produce all negative
outputs in its own difference layerlallowing a unit'output to
occur through its "t" connection. The highest output of an input
neuron 136 will inhibit all other output neurons 134. When the

threshold is the highest of all inputs, then all of the output
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neurons 134 are zero. It is noted that the threshold 92
operaEion for FTPKOM 86 (FIG. 9) operates in the same manner as
threshold 130 of TPKOM 124, i.e., threshold 92 receives the
output energy 132c (FIG. 9) from all neuial director 84 output
neurons (FIG. 8) in its layer. Further, the operation of FTPKOM
86 is the same as that described for TPKOM 124 relative to FIG.
25, with the exception of the “t” connection in TPKOM 124 and the
feedback in FTPKOM 86. Furtherm;re,vthe operation of the sum
circuit 88 is the same as that of sum circﬁit.89, with the
exception of the temporal. activations 54a described below.

The temporal activations 542, being a superposed signal,
require minor additions that do notlalter the LGN data 54b paths
from the spatial retina array 114 through a temporal component
object recognition vector 122. The LGN output signal 54b and the
temporal activations 54a are mostly separated in the frequency
domain in a'maﬁner'similar to the video, or audio, being ‘
separated from its bias signal in a magnetic tape recorder. The
broadband narrow pulses of the temporal spatial data activations
S4a contain frequencies in a higher band than the LGN signal 54b
from the image data. Each neuron in the LGN signal 54b path,
from the spatial retina 114 in FIG. 12.through to the sum neuron
€9 in FIG. 23, processes signals two ways. The LGN signal 54b is
processed in a feedforward normal neural network method through
to temporal recognition vectors 122 (FIG. 26). The same LGN
signal 54b activation at each feedforward neuron also enables the
passing of the temporal spatial data signal 54a, only for

positive signals above a threshold, if one exists. All other LGN
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signals 54b will inhibit any temporal signals from passing
through the output of any of the neurons in the temporal neural
networks. The neurons 144 of the temporal componeht object
recognition vectors 122 operate the same as th§ other tempo:al
neurons except they do not pass any of the LGN signals 54b. They
pass only the temporal broadband signals 54a to a spatial |
recognition vector array 58 (FIG. 27), when enabled by thé»LGN

signals 54b. Every temporal neuron passes the temporal signal

54a in proportion to the level of the positive LGN signal 54b at

the output of the temporal neuron. That is, the appropriate
positive LGN signél 54b controls the gain of the temporal signal
passed through the neuron.

The zempcrél}activations 54a use a wide band ci;cuit that

enhances only the common mode or superposed signal in the path of

‘g

active LGN signals 54b. Each neuron in temporal parallel memory
processor 56 contains a simple, positive signal, gain controlled,

broadband coupled circuit. "Each neuron", as used herein, refers

to all neurons from the spatial retina 114 output 54 (FIG. 12)

through temporal component recognition vector 122 (FIG. 26), with
an exception as noted’abpve? The steady state positive vélue pf
each neuron 144 (FIG. 26) proportionally controls the coupling of
its temporally activated common mode signal 54a throﬁgh the

neuron 144. Zero or negative output signals do not allow the
passage of the common mode signai. This neuron configﬁration
allbws the common mode siénal 54a to follow the activations of

the component features through the neural network to the tempofal

component memory vector space 140 (FIG. 22).
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The LGN pixel data 54b carries the temporal activations 545
through to active memory elements 110a of temporal memory space
140, memory vectors 51 and connections 77, as shown in FIG. 26
(corresponding to elements 110, vectors 63 and connections 79 of
FIG. 10). The output neurons 144 activate the broadband coupled -
circuit that allows only the temporal activations 54a to pass to
its output. The low band temporal signal 54b of activations 51
and connections 77 do not couplé~through to the output of this
neuron type. Broadband activations 54a from an array of temporal
component recognition vector output neurons 144 (FIGS. 26, 27)
become the temporal component recégnition vector 122 input to
spatial recognition vector array 58. Spatial recognition veétor
array 58 may represent a class example of cars and the
recognition of a super object may represent a specific type of
object from that class such as an old car, 57 Chevy, or & VW B;g,
each havirg a unique'spatial orientation of their component
obiects as provided in peripheral vision object activations 66.
Each super object class is processed in a spatial recognition
vector array 58. Inputs 122 to spatial recognition vector array
58 are received at spatial recognition delay vector arrayn(DVA)
146. DVA 146 is an array of delay vectors 288 of which each
delay element 148 contains a single “learning” delay element and
each delay vector 288 is connected o a Threshold and Hold Multi-
King Of the Mountain (THMKOM) 150 and to a prototype
“classification” neuron 156. The positive sensing Multi-King Of
the Mountain (MKOM) circuit is one of two (positive and negative)

MKOM circuits fully described in relation to U.S. Patent

40
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Application Serial No. 097477,653. Each delay vector 288
conta%ns specific delay valués that relatively alﬁer-a group 6f
time elements from a spike train, as shown in the examples of

FIG. 21, into a momentary vector of scalar elements. ,Thé scalér
elements aré processed as any set of scalar vector elements in a
constructed neural network. The dslay vector 288 aligﬁs a period
of.ﬁempqrél amplitude activations from'signal 54a into a
momentary multiaimensibnal vectS; in which ﬁhe vectors spatial

direction is used for recognition of a super object. _ -

A threshold and hold (TH) module 280 provides two processes

_to the connected THMKOM 150 arréy. In one process, the THMKOM

150 generates a threshold to ths momentary input vector. The
other process is a sample and hold process in synchrony with the
output of neufon 156 to maintaiﬁ the momentary veétor values for
a longer time but less than one period of signal 54a. It is
noted that the threshoid doés not-Subtract‘from.thé iqput values,
but it triggers an immediate “no hold” for all sample and hold','
values less than the threshcld vealue. This process maintzins the
propef vector glement ratios that are uéed.for the recognitién
process. The hold input vector values appear to be steady with a
short “off” periodewhen the THMKGM 150 outputs are zero. The

short “off” period is provided and will be further described

‘below. .With an example spike train signal applied to a delay

vector 288, each delay element 148 synchronizes a spike
representing a scalar value in synchrony at the output signal 282
of the delay vector 288. Signal 282 is a vector input signal

applied to a THMKOM 150 and signal 282 repeats for each period of
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the spike train. Each signal 282 contains the relative spatial
distr}bution of the component objects of a super objeét in
process of recognition. Signal 282 ié composed of signals 154,
an output of each delay element 148. Signels 134 are in
synchrony at one instance of time with each-other,'and are powsr
summed by a class prototype neuron 156. ‘This form of nonlinear
summation provides an improved signal proceséing~iﬁ a noisy.f;eld
of extraneous “signals”. The wa%eform 64, or prototYpe
activation, at the output of neuron 156, will be a large
amplitude sigﬁal, reéeating and synchronized within the pericd <3
signal 54a, with a possibility of many smaller pulses occurring
at “random” times between the large, time shifted, synchronized,
repezting signals. |

There is provided one spatial recognition vector array
module 58 for each output class in the preferred embodiment of
the invention. The temporal activations 54z, input to & spatizl
}ecognition delay vector 288, are on the order of the narrow
output impulse of the matched filter 96 of the chaotic oscillator
65. The temporal activations 54a at the temporal component
object recognition vectors 122 are similar to the signals shown
in FIG. 21. A set of.simple.delays, or a delay-ve;tor 238, is
matched to the timing of the temporal activations 54a tha:
represent component objects in a specific spatial configuration.

The output signals 154 of all delay vector elements 148 are

synchronized once per temporal activation period of signal 54a,

both in the individual connections to a prototype neuron 156 and

in ezch input vector 282 and THMKOM 150. All simple delays
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become the spatial recognition DVA.146 of which the output

signa}s 154 are summed by the prototype neurcn 156 (FIG. 27). -
Neuron 156 contains a dynamic threshold high enough to inhibirt
noisy delays and to pass the highest inpuﬁ power sum value to its
output 64. Each set of spatial delay vectors 282 also drives
feature_limiting THMKOM 150} a vector decoupling module 158 and
super object neural director 152. |

The spatial recognition vecéor arréy 58 receives outputs
from various temporal component object recognition vector output_
neurons 144 that are associated withvthé class of array 58. Each
neuron 144 outputs a train of pulses similar to those shown in
FIG.-21. One output neuron 144 contains a speéific pulse ttain
similar to one of the example pulse trains in FIG. 21. The pulse
train contains a group of repeating pulses of different
amplitudes sﬁch as t(a) through t(j), which input into a delay
vector 288. The delay values (previously learned) of the delay
vectbr 288 are such that the repeating pulses are temporélly
aligned to produce a simultaneous pulse output 282 of each delay
Veétor 288, once in each temporal period of signal 54a. The
simultaneous pulse output 282 of a delay vector 288.is composed
of signals 154, which have.elements'that contain_values egual‘to
the varying pulse train amplitudes, thefeby producing a momentary
multidimensional vector, which contains a directionbin space, "
used for recognition of a super object. The delayed signals 282
have a threshold appiied by TH 280 to inhibit a hold operation
for all gated values less than the threshold value, and the;

remaining signals 282 are then gated and held by THMKOM 150 and
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decoupled by VD modules 158. The resulting signal vector ig an

input to a super object heural‘director 152 to increase the

vector’'s resolution. The highest element of the vector, which

represents both the vector's general direction in its output

space and a recognition of a learned super object, is produced as

an output 182 of a PKOM 160.

The outputs of the array of PKOMs 160 are all connected

through associative connections 182 to super object neurons 162.

If the external associative connection 62 is uninhibited so as

to represent, e.g., an interest in an old car, then the

activetion from the super object neuron for the old car,

reprasented by 162 object(a), passes through the enabled TZKOM

170, which operatesiin a manner similar to TPKOM 126 (FiG. 25).

The old car PKOM data 161, i.e., the collection of associative

connections 182 to old car neuron 162 object(a), is theréby

passed from the held vector to activate neuron 162 object(a} and

“+

signal for the external associative connection 62 of interest is

he sld car output activation 60. It is noted that the normal

an inhibit signal applied to each spatial recognition vector

array 58. This architecture reduces the burden of extraneous

neural information and neural activation processing in all

spatial recognition vector arrays 58, thus an activation of

irterest is an uninhibit signal. The inhibit/uninhibit signal

can be a controlling input signal to a threshold device in that a

high threshold would inhibit all signal passage, while the at

least one uninhibit (or the removal of the inhibit) will ai{ow

the threshold device to operate in a normal mode.

44
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noted that the architecture from the PKOM 160 array through -
connections 182 and neurons 162 is similar to a memory vecté:
space,vanAactive memory vector and a recognition Vgctor . o
architecture. Each caf super object is procéssed as described
above. Other-super object classes, other than cars, are .
represented in other instances of a spatial recognition vector
array 58. 4

In the example where the inéut image 42 is an old car and
the external associative connection €2 is uninhibited to provide
an activation of a-“transportation” need, or an equivalent, the
inhibit signal will allow TPKOM 170 to pass old car activations
at neurbn 162 object(a), to become the attentive object
:epresentaﬁion 66,‘as showh in FIG. 1. TPKOM 170, shown in FIG.
27, only allows;one super object activation 180 to become the-
attentive object representaticn 60.

A second scenario is allowed when a car input image“42 is
foveated and no interest or assoqiative_activation 62 is active,
i.e., the signal remains inhibited. Then the only output of a
spatial recognition vector module 58 is the protbtype object
activation 64.. A third scenarib is gllowed if no object
activztion 64 exists, then ths input image'42 contains no_known
class object. A fourth scenario is azllowed when the pile of old
junk of FIG. 3 is the input image 42. 'The spatial configuration
of the component objects is hot correct to represent a car and
only the peripheral vision object activations 66 (FIG. 11) will
be active. Also, the temporal signal 54a will not cohtainlq'

recognizable spatial configuration representing a car. Thus the
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spatial recognition vector array 58 will not contain an output
signa}.

As with the component recognition vectors 49'6f FIG. 10, a
temporal component recognition vector 122 (FIG. 26) contains a
neuron 144. Each neuron 144 activates the passage of a temporal
signal 54a through the neuron 144 to the DVA 146 of the spatiél
recognition vector array 58. Temporal component object
recognition vector 122 includes.éonnections 277 to provide inputs
to a group of delay elements 148 of delay vector 288.  Thus, a
combination of a neuron - 144 and a group of recognition
connections 277 comprise a temporal component object recognition
vector 122 (FIG. 27). The active memory element 110a is shown as-
2 single active element in FIG. 26 tz simplify the drawing and to
illustrate the concept of the ﬁemporal memory vector 51. Each
aétive memory element 110a is in reality a group of individual
activities of SUMs 89. The temporal component recognition
vectors 122 each have -an input for a common threshold 184 to each
neuron 144. The purpose of the threshdld is to inhibit minor
activations of the temporal componen: recognition vectors 122.

In addition to the old car attentive object representation
60 (FIGS. 1 and 27), the super object output represéhtatign of
TPKOM 170 is also connected through its associative connections
feedback 172 to the component object chaotic oscillators 65 of
the component recognition vectors assembly 48 (FIG. 11). Here
tbe association connectiors become z synchronizing feedback

signal 172 and increase the output amplitude of the tempora{

activations 50b. The increase of the temporal activations 50b
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then further increases the attention.gain in the LGN module 45

only for the component object neurons that constitute the old car

bpixel»data. The associative connection feedback éignal~17§

maintains a "phase lock" on‘each chaotic osci;latdr 65 by
repetitively resetting its internal>condition; ’

| when the chaotic oscillator 65 is gated,oh, it is started in
an initial condition that is ideﬁticaI to ﬁhe internal conditions

that exist in the chaotic oscillator just after a synchronization

ractivation. These conditions of synchronization produce a

temporal activation sequence of all relative component objects

that can be recognized by the spatizl recogniticon delay vector

array 146. At this point in the arcaitecture, only the old car

object in FIG. 2 will activate the cld car‘super-object neuron
162 object(a) and the attentive object representation 60 in FIGS.
1 and 27. The resolving ability of the prototype neuron 156 '
(FIG. 27) is lbw because the.éimple summations of the aligﬁed
temporal activations carr?’abrepresentation of & generaliééd
correct component configuration. - The super object, with its
relative attentive object representation 60, has a high‘resolving
ability because its super object neural director 152 has a higher
5énsitivity to slight variations-in the component spacingg The
e#ample prototype output only represents a car, while the super
object represents the type of cér;‘ The initial training of the
various neural network modules for a super object classification
bring the chaotic oscillators 65 of spatial image processor 10
into a correct synchronization, and the spatial recognition.delay

vector array 146 into a correct temporal alignment.
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Synchrénization of the chaotic oscillators 65 is performed by a
charagteristic of the feedback signal 172. BAs previously
described above, the temporal signal 34a is converted from &
serial train of information to that of a momentary
mul;idimensional vector which is held as an input signal in the
THMKOM 150 for a time less than the repeatable period of signal
54a. When the hold time of the multidimensional vector is
completed the input signal in tH; THMKOM 150 becomes a vector of
éero. The zero vector:affeCts botn signal 60 and feedback signal
172 as a “drop out” that is used to synchrénize only the chaotic
oscillators 65 providing teﬁporal‘éctivations for the recognized
super object class 60.

- The spatial image processor 10 shown and described herein
recuires two training phases that occur under a single
appiication of a new super ocject to be learned, as long as ai:i
component objects were previously learned. The first phase is 2
chaotic adaptive resonant learning of the spatial recognition
delay vector array 146 under an instance pnly when it is the
first to be learned in its class. The second phase is the
learning for the initial condition activation of the chaotic
oscillators 65 which forces each-reiated component chaotic

oscillator 65 into a closer "synchrony" with each other. The low

level component recognition vector array 49 and temporal

- component recognition vector array 122 must be independently

learned from the new object to be learned.
To train a low level component object, its input image 42

can be placed anywhere on the irput array 40 to produce a
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component memory vector 63 (FIG. 10) and a temporal memcry vector

51 (E}G._26) in their respective output space 59{ 140. To tréin
a femporal component object recognition vector in array 49, a set
of normalized value connections 77 are placed between an
unlearned output neuron 74a in the array.of temporal component
recognitiod vectors 122 and each element of its active temporal
component memory vector 51. |

The componént recognition véctdr connections 79 (FIG. 10)
are also trained as indicated above,.exﬁept thét a set of

normalized component recognition bi-directional connections 79

are connected between an unused neuron 174 of component object

‘recognition module 48 and each element of the memory vector 63

>

5 La = T4 (o
£ 18 app.lea.

o

while the low level component objsc: input image
A component recognition vector neﬁroh 67 allows an activs
recognition signal to feedforward along one path to enable a
chaotic oscillator 65 and a feedback signal to back track
paraillel along thé same péth as the active signal. The
feedforward active signal enables the feedback path at each
neural junction.

The temporal activations of a chaotic oscillator §5 (FIGS.
11 and 11A) are initialized during a low level component training
of a cbmponent recognition vector 49 and connections. The

matched filters 96 of each uninitiated chaotic oscillator 65 have

.random matched filter connections and have a random activation

pattern to be the chaotic oscillzter's "initial conditicen”. A
set of initial conditions is defined as variables/potentials

assigned to each neuron and delay line cells where the initial
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- conditions are values equivalent to a free running nonlinear

chaotic oscillator 65 is initially activated by its component

1

chaotic oscillator frozen in an instant of time. At the time a

recognition vector 49, the matched filter 96 senses its highest
output activation over thé seqﬁence ¢f patterns and wher zan
identical activation occurs‘for the second time, the matched
filter 96 assumes connection values equal to the chaotic
osciliator's activation pattern.;f nonlinear neurons 96a of
matched filier 96. A matched filter 96 is similar to the initial
conditions and is defined as containing connection values from an
instant~in time of neuron values where each connection assumes
its neuron’s activation value at said instant of time. The
training of each low level component object is processed as’
above.

The trzining of a new atﬁentive object class is usuzally
acccmolished by using a basic form of the object containing all
essential components because the first object also approximates
the prototype class, but it is not required for it to be a basic

form. Special initial conditions are required for a new

attentive object class for the spatial recognition vector array
58 of FIG. 27. Assuming an example of an old car as the training
image 42, these initial conditions are:

(1)_The neuron 156 operates at & low.threshold;

(2) There aré n9 temporal component recognition vector

output connections 277 to the spatial recognition delay vector

array 146;

R
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-(3) Each untrained delay vector element 148 is set for a
:andoT delay:

(4) “Prewired assemblies” 176 of grouped delays 288, THMKOM.
150, VD 158, super object ND 152 and PKOM 160 modules exist as a
set of independent médules with a2 priori unit connections betweén
each modules;

- (5) Each delay output signal 154 is connected to neuron;156
with a unit value connection; -

(6) The super object old car nesuron 162 object(a) input
connections 182/161 do not exist; |

| (7) The associated feedback connettion 172 does not exist;

(8) The external class associative connection 62 is

‘uninhibited because the object to learn is an object cf interest;

(9) Eil remaining connections are as represented in the

spatial recognition vector module 38;

(10) Th module 280 has a temporary-trainihg connection (not
shown) to object (a) neuron 162; and '

(11) A new attentive object to be learned places its input
image7oﬂ the input array 40. | i

In the first phase of training, the various component object
recognition vectors 49 activate their chaotic oscillators 65 and
matched filters 96 to produce a sequence of temporal data 104,
similar to one of the impulses per period shownlin FIG. 15.
Temporal daté,104 returns along the feedback path through retina
52 and memory processor 56 to the temporal component recognition
vectors 122, as previously described. Upon a Hebbian—like

activation, each one of the active temporal component recognition

51




. previously enabled by the external connection 62. The "drop out”

vectors 122 becomes directly connected by unit connections 277 to
a delqy vector 288 in the DVA array 146, as neural module 58 is
active for learning, and immediately neuron 156 bécomgs activated
with temporal pulses from signal 54a. Each chaotic oscillator 65
is similar to each other but contains random initial condition
starting values and different immediate activation patterns.
Thus they have similar repeated pattern periods, which generate
varied temporal signals that prdaﬁce repeated varied rising of
power summations in heuroﬂ 156 caused by the initial random
delays aﬁd the input chaotic temporal activations. Each time the
neuron 156 senses a maximum peak in summaticn, it produces a
momentary output 64 and readjusts its threshcld to its new peak
in 2 period of 54a. 1In this training mode only, and upon the
first repeated maximum peak of neuron 156, the TH module 280
learns an approximation of the timing period for an end of the
hold time and provides a synchronizing “drop out” as discussed
below. As a function of the changing output sequences from
neuron 15€, while the hold timing stabilizes through,neufon 156,

the TH module 280 provides a “drop out” simulation to TPKOM 170

occurs bétween the hdld time and-a period of signal 54a. fAlso,
upon fhe initial synchronizing “drop out” activity, the |
activations between the TPKOM 170 output and the associative
active component chaotic oscillators 65 generate Hebbian
associative feedback unit connections 172 between the TEKOM
active output 170 and each active chaotic oscillator 65. Upon

the generation of the feedback connections 172, each time neuron
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162 is at a peak, the TH module 280 momentarily “drops out” its

act1v1ty and the TPKOM output synchronizes the oscillators 65 by

resettlng the oscillators’ initial condltlons The'temporal

. activations at the spatial recognition delay vector array 146

(FIG. 27) start to repeat'in a‘deterministie fashion. The
individual deleys are further adjusted in time to increase the
output of neﬁron 156. When the delay error ‘and the TH module 280
hold time error both approach an-acceptable mlnlmum, w1thout a
duplication in delay values in any one of the group of delay
vectcrs 288, the training is halted for that assembly. As the
output 64 of 156 increases during this training, so does its o
thieshold to insure that only one peak output is convergent.

When the delays for all assemblies_arekconvergent and their
output.activatione correlate through to PKOM 160, the old car
super object normalized input connections 161 are genefa:ed.

Thus szch cf the concurren it active PKOM 160 has one output (FIG.
27) for the object learned and activates the super object eld-car
neuron 162 object(a). At the same instant of time, the training
connection from TH module 280 is removed.. If required; training
is continued to further optimiie the delays and hold values.

The object trained now becomes the prototype object, becomes

the first super object {a) neuron and becomes the attentive
object representation-GO. The sequence of the first phase is

complete and training continues into the second phase without

stopping if it is found to be required.

In the second phase, the chaotic oscillator's exact

activation pattern is noted at the instant of the matched
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temporal data 104 output activation and is used ﬁo rematch the
connegtions of network matched filters 96. The reason for a
rematching is that a synchronized chaotic oscillator near its
initial condition actuation alters its patterns slightly from
that of its initial free running mode and that the best match of
the random connections 96 may not be exact. The chaotic
oscillagdr's matched filter 86 is rematched at the time when its
pezk zctivation occurs by resetfing the matched filter connection
values eéual to the chaotic oscillator's exact activation
patterns and resetting fhe matched filter 96 threshold to a value
relative to its new matched output value. This does not alter
the timing of the chaotic oscillator 65. The above training
phases allow an "immediate" (within one cycle) spatial
recegnition of a super object of intsrest when its inpu: image‘is
instantly presented on the inpu: array 40. Other super object
neurons 162 of the same class are trained by repeating the
application of aAnew normalized conneétion set 161 from the
active PKOM 160 outputs 182 to the new super object neuron 162.

A new class of super objects requires another spatial recognition
vector array 58 and training of_its component re;ognition vectors
49, then a repeat of the two phases.'

There is thus provided a spatial image processor 10 that is
capable of discriminating between two groups comprised of
identical components in two different spatial configurations.

The spatial image processor 10 increases its sensitivity or
a@ttenuation to an object of intersst in a field of more than cne

object and invariantly recognizes an object in retina
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translations. The processor recognizes a partially hidden object

when the object is incomplete or split, and also recognizes‘one'
object in a field of many different objects and/or of different
object sizes.

The description of the spatial image processor 10 has been
presented using component objects in a spatial configuration cf a

super object. The component objects do not have to be as complex

- as used in the examples herein. They can be of a lower set of

basic geometric shapes or primitives (a set of the smallest and -
discernible‘parts of a visual scene) out of_which any super .
obﬁect can be constructed.

The sensitivity of the spatial image processor 10 iavention’
can be improved or simplified by interchanging the PMKOM, MKOM;
PKOM, and KOM with or without thresholds‘aﬁd/or with other
constructed neural network modules depending upon the design .
and/or purpose of the embodiﬁent for the invention. These
changes may increase the efficiency of the attentive super object
and at the same time affect “non at;entive” component obkjscts ¢
be reduced below the applied thresholds, thereby being eliminated
from all recognitions as their effective contrasts are zeroed.

‘Referring now to FIGS. 28-30, a second embodiment of the:

~spatial image processor is shown as 10’. As in FIG. 1, FIG. 28

shows the oﬁerall.architecture of spatial image processor 10’.
In comparison with FIG. 1, spatial image processor 10’ combines
the two memory processors 46 and 56 of the first embodiment into
a single memory processor 46’ . Memory processor 46’ is

configured in the same manner as processors 46 and 56 of the
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first embodiment, including the complex neurons as described
previpusly for the first embodiment. The complex neurons of
processor 46’ enablé the feedback signal back to the retina,
enable the spatial temporal signal forward for super obiect
recognition through the same path as the pixel data and process
the pixel signal forward for component recognition. The “image
signal”*and/or its derivatives pass three times through the

N

memory processor 46’ and component recognition vectors assembly
48’ .

Three signals, 44, 50’ znd 54a’, will be used to describe
the signel paths through spatial image proéeséor'lO'f These

signals correspond to signals 44, 50 and 54a, respectively, of

signal proceésor 10 of FIG. 1. Standard pixei data 44’ travels

throuch LGN 45’ to the component object recognition vectors and
activztes one or more generators 65’ from a2 component temporezl
generztor arfay (FIG. 39) within component recocgnition veczors
éssembly 48'. It can be seen that the component temporzl
generators 65’ correspond to chaotic oscillators 65 of FIG. 11.
A generator 65’ becomes active and applies a sequential pulse as
2 source ior the temporal signél 50’. Each active component
recognition vector 49’ gates.its~temporal activétion at a
specific time within a cycle of repea:t temporz2l activations, as
controlled by temporal sequence timer 49a. Signal 50' follows
the feedback path, enabled by'signal 44’ , back to gradient
temporal spatial retina 52’ and LGN 45’.

Temporzl signal 50’ (as signal 50a’) causes LGN 45’

attention and retina spatial distributions as described in

.56
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relation to LGN 45 of FIGS. 1 and 5, proViding signal;44a”-to
gradient temporal retina 52’. (In the embodiment of-FIG. i,
corresponding signal 44a of LGN 45.is.provided to memory
processor 46 as signal 44b‘and to retina 52 as siénal'44c;) ‘The
gfadient temporal retina 52’ (FIG. 29) opéraﬁes genera;ly'in the

manner of retina 52. However, instead of signal 50’

,(corresgonding to signal 50b of FIG. 12).activating neurons in

R

the temporal retina 112', signal 50?>has-a gradient appiied to it
at gradient retina 112a. The activations from signal 50’ through
gradient retina 112a to temporal retina 112’ are differsent in
amplitude depending upon hoﬁ far from the fovea center the
activated neurons 1ll6a are. Thus, the gradisnt temporal retine

52’ must sense the image to be recognized at its fovea center,

ot o

-

i.e., the new attentive object tc be learned is foveated oy

N

placing the centroid of its input image at the center of the
input arréy 40’ .

The temporal and spatial retinas 112’ and 114’ oJperate in :
the manner described for retinas 112 and 114, respectivgly; to
provide signal 54a’. The temporél spatial signéls‘54a' are now
combined with the pixel data 44’ and, being enabled at each
neuron, ride through the positive. path of signal 44’ to the
component temporal generators 65’ of component recognition
vectors assembly 48’. The component recognition'vectors assembly
42’ has two outputs. The first is the output 104’ of component
temporal generators 65’vfor‘signal 44’ that enables signal 50’ as
described previously. The second is the output 122’ that enables

signal 54a’. It is seen from FIG. 30, that output 122’ results

57
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from recognition vectors 49’ combined with si@nal 54a’ merely
passi?g through assembly 48’. By merely passing through assembly
48’, the path for signal 54a’ from gradient teﬁpofal retina 52/,
through processor 46’ and assembly 48’ is analogous to the path
for Qighal 54a from retina 52 through processor 56 in the first
embodiment of FIG. 1. Output 122' feeds the super object and
temporal array 58’ to produce attentive object representation
60’, prototype object activatioﬁ; 64’ and associative connections
feedback 172’, in a manner similar to that described for array

58, rspresentation 60, activations 64 and feedback 172,

respectively, of FIG. 1. While the super object and temporal

h

()

array 58’ is similar to spatizl rscognition vector array 59
FiG. i, array 58’ extends the external inhibit/activate signal
62’ to its TH module to further reduce unnecessary signel
processings as discussed for TPKOM 170 of FIG. 27. ‘

Thus, it is seen that the spatial image processor cf either
embodiment senses the relative Euclidean spacing of  component
objects that make up a super cbject's virtual image, so as to
recognize the super object and its classification without regard
to the image size. The information of the relative Euclidean
spacings of the component object-images is carriea with each
temporal component object activation. Therefore, a partial
obstruction of the super object image does not impede the
recognition of the super object as ﬁhe remaining visible
component objects will carry correct and recognizable geometric
configurationlinformation. The component objects Sf a super

object, in a different spatial configuration from that learned,

58
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a#e discriminated from recognition by their spatial oriéntatidns.
The spatial image processor uses a low level attention'feedbaCk
from each recognized componentAobject in an input scene to
enhance the sensitivity of each known component object signal
path and to reduce the unimportant parts of the scene. If theré
exists an interest -(external input) in é super object in the
scene, then a higher level feedback attention furthgr enhances
the processed signal carrying tH; super object and reduces all

other processed signals in the input scene.
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Attorney Docket No. 77346
A SPATIAL IMAGE PROCESSOR

ABSTRACT OF THE DISCLOSURE

A spatial image processor neural network for processing
image data to discriminate betweer first and second sparial
configurations of component objé&ts includes a photo transducer
input array for converting an.input image to pixel daté and
sending the data to a localized gain network (LGN) module, a
perz>iel memory processor and neurcn array for receiving the
pixs. data and prccessing the pixel data intc compcnant
_recagnition vectors and cheaotic cscillators for rsceiving th
recognition vectors and sending feedback data to the LGN moduls
as attention activations. The network further includes a
tempcral spatial retina for rsceiving both the pixel data and
Tempecral feedback activations and génerating temporal spatial
vecters, which are'processed by a temporal parallel processor
intc temporal compbnent_recognition vectors. A spatial
recognition vector array receives the temporal component
recognition vectors and forms an-object representation of the

N

first configuration of component objects.
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OLD CAR

FIG. 2

~ PILE OF OLD JUNK

FIG. 3




AN OLD CAR IMAGE SEPARATED BY A TREE

FIG. 4
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